5,826 research outputs found

    Charles Darwin and the Artificial Comb

    Full text link

    Langevin dynamics in crossed magnetic and electric fields: Hall and diamagnetic fluctuations

    Get PDF
    Based on the classical Langevin equation, we have re-visited the problem of orbital motion of a charged particle in two dimensions for a normal magnetic field crossed with or without an in-plane electric bias. We are led to two interesting fluctuation effects: First, we obtain not only a longitudinal "work-fluctuation" relation as expected for a barotropic type system, but also a transverse work-fluctuation relation perpendicular to the electric bias. This "Hall fluctuation" involves the product of the electric and the magnetic fields. And second, for the case of harmonic confinement without bias, the calculated probability density for the orbital magnetic moment gives non-zero even moments, not derivable as field derivatives of the classical free energy.Comment: 4 pages, 2 figures, revised versio

    Three-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement

    Full text link
    Exact-diagonalization calculations for N=3 electrons in anisotropic quantum dots, covering a broad range of confinement anisotropies and strength of inter-electron repulsion, are presented for zero and low magnetic fields. The excitation spectra are analyzed as a function of the strength of the magnetic field and for increasing quantum-dot anisotropy. Analysis of the intrinsic structure of the many-body wave functions through spin-resolved two-point correlations reveals that the electrons tend to localize forming Wigner molecules. For certain ranges of dot parameters (mainly at strong anisotropy), the Wigner molecules acquire a linear geometry, and the associated wave functions with a spin projection S_z=1/2 are similar to the representative class of strongly entangled states referred to as W-states. For other ranges of parameters (mainly at intermediate anisotropy), the Wigner molecules exhibit a more complex structure consisting of two mirror isosceles triangles. This latter structure can be viewed as an embryonic unit of a zig-zag Wigner crystal in quantum wires. The degree of entanglement in three-electron quantum dots can be quantified through the use of the von Neumann entropy.Comment: To appear in Physical Review B. REVTEX4. 13 pages with 16 color figures. To download a copy with higher-quality figures, go to publication #78 in http://www.prism.gatech.edu/~ph274cy

    Inversion improves the recognition of facial expression in thatcherized images

    Get PDF
    The Thatcher illusion provides a compelling example of the face inversion effect. However, the marked effect of inversion in the Thatcher illusion contrasts to other studies that report only a small effect of inversion on the recognition of facial expressions. To address this discrepancy, we compared the effects of inversion and thatcherization on the recognition of facial expressions. We found that inversion of normal faces caused only a small reduction in the recognition of facial expressions. In contrast, local inversion of facial features in upright thatcherized faces resulted in a much larger reduction in the recognition of facial expressions. Paradoxically, inversion of thatcherized faces caused a relative increase in the recognition of facial expressions. Together, these results suggest that different processes explain the effects of inversion on the recognition of facial expressions and on the perception of the Thatcher illusion. The grotesque perception of thatcherized images is based on a more orientation-sensitive representation of the face. In contrast, the recognition of facial expression is dependent on a more orientation-insensitive representation. A similar pattern of results was evident when only the mouth or eye region was visible. These findings demonstrate that a key component of the Thatcher illusion is to be found in orientation-specific encoding of the features of the face

    Ground State Spin Oscillations of a Two-Electron Quantum Dot in a Magnetic Field

    Full text link
    Crossings between spin-singlet and spin-triplet lowest states are analyzed within the model of a two-electron quantum dot in a perpendicular magnetic field. The explicit expressions in terms of the magnetic field, the magnetic quantum number mm of the state and the dimensionless dot size for these crossings are found.Comment: 8 pages, 2 figures (PS files). The paper will appear in Journal of Physics: Condensed Matter, volume 11, issue 11 (cover date 22 March 1999) on pages 83 - 8

    Are Women’s Mate Preferences for Altruism Also Influenced by Physical Attractiveness?

    Get PDF
    Altruism plays a role in mate choice, particularly in women’s preferences, and particularly for long-term relationships. The current study analyzed how these preferences interacted with another important mate choice variable, physical attractiveness. Here, female participants were presented with photographs of men of varying levels of physical attractiveness, alongside descriptions of them behaving either altruistically or not in different scenarios. The results showed women preferred altruistic men, particularly in long-term relationships, and that this interacted with physical attractiveness such that being both attractive and altruistic made a man more desirable than just the sum of the two desirable parts. Also, being altruistic made low attractive men more desirable, but only for long-term relationships. Finally, men who were just altruistic were rated more desirable than men who were just attractive, especially for long-term relationships. Overall these findings are discussed in terms of the role of altruism in mate choice, particularly in long-term relationships and directions of future research

    Integrating Species Traits into Species Pools

    Get PDF
    Despite decades of research on the species‐pool concept and the recent explosion of interest in trait‐based frameworks in ecology and biogeography, surprisingly little is known about how spatial and temporal changes in species‐pool functional diversity (SPFD) influence biodiversity and the processes underlying community assembly. Current trait‐based frameworks focus primarily on community assembly from a static regional species pool, without considering how spatial or temporal variation in SPFD alters the relative importance of deterministic and stochastic assembly processes. Likewise, species‐pool concepts primarily focus on how the number of species in the species pool influences local biodiversity. However, species pools with similar richness can vary substantially in functional‐trait diversity, which can strongly influence community assembly and biodiversity responses to environmental change. Here, we integrate recent advances in community ecology, trait‐based ecology, and biogeography to provide a more comprehensive framework that explicitly considers how variation in SPFD, among regions and within regions through time, influences the relative importance of community assembly processes and patterns of biodiversity. First, we provide a brief overview of the primary ecological and evolutionary processes that create differences in SPFD among regions and within regions through time. We then illustrate how SPFD may influence fundamental processes of local community assembly (dispersal, ecological drift, niche selection). Higher SPFD may increase the relative importance of deterministic community assembly when greater functional diversity in the species pool increases niche selection across environmental gradients. In contrast, lower SPFD may increase the relative importance of stochastic community assembly when high functional redundancy in the species pool increases the influence of dispersal history or ecological drift. Next, we outline experimental and observational approaches for testing the influence of SPFD on assembly processes and biodiversity. Finally, we highlight applications of this framework for restoration and conservation. This species‐pool functional diversity framework has the potential to advance our understanding of how local‐ and regional‐scale processes jointly influence patterns of biodiversity across biogeographic regions, changes in biodiversity within regions over time, and restoration outcomes and conservation efforts in ecosystems altered by environmental change

    Emotional Strategies as Catalysts for Cooperation in Signed Networks

    Get PDF
    The evolution of unconditional cooperation is one of the fundamental problems in science. A new solution is proposed to solve this puzzle. We treat this issue with an evolutionary model in which agents play the Prisoner's Dilemma on signed networks. The topology is allowed to co-evolve with relational signs as well as with agent strategies. We introduce a strategy that is conditional on the emotional content embedded in network signs. We show that this strategy acts as a catalyst and creates favorable conditions for the spread of unconditional cooperation. In line with the literature, we found evidence that the evolution of cooperation most likely occurs in networks with relatively high chances of rewiring and with low likelihood of strategy adoption. While a low likelihood of rewiring enhances cooperation, a very high likelihood seems to limit its diffusion. Furthermore, unlike in non-signed networks, cooperation becomes more prevalent in denser topologies.Comment: 24 pages, Accepted for publication in Advances in Complex System

    Negative differential conductance in quantum dots in theory and experiment

    Get PDF
    Experimental results for sequential transport through a lateral quantum dot in the regime of spin blockade induced by spin dependent tunneling are compared with theoretical results obtained by solving a master equation for independent electrons. Orbital and spin effects in electron tunneling in the presence of a perpendicular magnetic field are identified and discussed in terms of the Fock-Darwin spectrum with spin. In the nonlinear regime, a regular pattern of negative differential conductances is observed. Electrical asymmetries in tunnel rates and capacitances must be introduced in order to account for the experimental findings. Fast relaxation of the excited states in the quantum dot have to be assumed, in order to explain the absence of certain structures in the transport spectra.Comment: 4 pages, 4 figure

    Polarization immunity of magnetoresistivity response under Microwave excitation

    Full text link
    We analyze theoretically the dependence of the microwave polarization sate and sense on the magnetoresistivity response of two-dimensional electron systems. Linear and circular polarization have been considered with different senses and directions. We discuss the polarization dependence of the longitudinal magnetoresistivity and propose an explanation for the experimentally observed polarization immunity, i.e., resistivity oscillations and zero resistance state regions are unaffected by the sense of circular polarization or by the direction of microwave electric field.Comment: 4 pages and 1 figur
    corecore